
A Novel Hybrid Pipeline Design Methodology on a Multi-Cores
Streaming System for Multimedia Applications

Yu-Chi Su, Sung-Fang Tsai, You-Ming Tsao, and Liang-Gee Chen
DSP/IC Design Lab, Graduate Institute of Electronics Engineering

National Taiwan University, Taipei, Taiwan
{steffi,bigmac,eddie,lgchen}@video.ee.ntu.edu.tw

Abstract—With the rapid growth of media-processing tech-
nologies and the advancement of semiconductor process, more
and more multimedia applications are integrated into consumer
electronics. However, in such highly complex system, the design
time for the circuit designers does not reduce much as the process
advances. We propose a novel hybrid pipeline design methodology
for multi-core streaming system from C-level to RTL design.
Our methodology can optimize data communication for media-
processing applications to achieve both flexibility and efficiency.

I. INTRODUCTION

Recently, numerous multimedia applications including
video/audio/image processing and 3-D graphics are embedded
in modern consumer electronics such as PDA, smart phones and
so on. An application specific integrated circuits (ASIC), designed
with optimized data paths for one special multimedia application,
can achieve high performance for a specific application. However,
such dedicated hardware accelerators lack flexibility and result in
high design effort. On the other hand, traditional general-purpose
programmable processors, which benefit from design flexibility and
fast time-to-market, attempt to support a wide range of applications so
that meeting performance requirements in real-time when processing
multimedia applications are nearly impossible. Stream processors,
designed for media-processing applications, fills the gap between
special-purpose ASICs and traditional programmable processors to
achieve both efficiency and flexibility [1-2]. However, despite the
optimized architecture of a stream processor for media-processing
applications, a multi-core stream processor system still suffers from
performance degradation due to bus contention, resulting in limited
scalability. Therefore, a complete and application-driven design
methodology addressing communication issues to develop a scalable
multi-core stream processor system and supporting designers ease
design space exploration at system-level is needed. In this paper, we
propose a novel hybrid pipeline design methodology on multi-core
streaming system from c-level down to RTL. The goal of the
design methodology is to develop a multi-core streaming system for
multimedia applications in both efficiency and flexibility.

II. THE STREAM PROCESSING MODEL

Media-processing applications have the following characteristics:
data parallelism and high computation-to-memory ratio. The stream
programming model exploits these properties to express a media
application as a stream program: The abundant and repeated input
data can be viewed as a sequence of stream elements. A stream
element is a group of user-defined data structure. For example, a
stream element can be a single pixel from an image, a 256 pixels
macroblock in video encoder, or a vertex data in graphics. Stream
data is a finite sequence of user-defined data element and processed
through a series of computation kernels.

The stream programming model divides an application into two
parts: data communication and data computation. In a streaming
system, data access unit is separated from data computation units.

Fig. 1. Multi-Core stream processor architecture

Data access units dealing with data movement concurrently operate
with computation units to speed up processing time. Kernel, the
computation unit in a stream processor, exploits the parallelism of
a stream program with multiple execution units that can process
multiple stream elements in parallel. To capture data locality of a
stream program that has higher immediate data locality within kernel
and lower data access rate to the external memory, the memory
system in a stream processor is designed as a hierarchical architecture
with degrade bandwidths from kernel to the external memory. With
exploiting parallelism and locality of stream programs, stream pro-
cessors can meet high performance. Moreover, the stream processor
is programmable that helps designers to reduce development time.
Due to the significant improvement of performance and flexibility,
the stream processor has become the main stream for modern high-
computing devices, such as GPUs.

III. SYSTEM ARCHITECTURE

This section introduces the architecture of the proposed multi-
core streaming system. Fig. 1 shows the system block diagram.
The streaming system is designed based on the stream programming
model. The primitive units are unified stream cores and bridges,
representing data computation units and data access units in the
system, respectively. Since the data access unit is separated from the
computation unit, repeated data movement and data processing can
operate at the same time. Bridges implement data access behaviors
for streaming system. We design four kinds of bridges with different
functions- head bridges, kernel bridges, route bridges, and foot
bridges. Kernel bridges gather or split stream elements from the last
stage of kernel and then send new structured stream elements to the
kernel at the next stage. The head bridge manages data movement
from the external memory and the foot bridge moves data in the
opposite direction. Route bridges can both send/receive data to/from
the memory. Behaviors of all kind of bridges are defined by users on
design time to optimize communication in efficiency.

Besides bridges, kernels are implemented as unified stream cores.
A stream core can execute multiple threads at the same time to

2010 IEEE 14th International Symposium on Consumer Electronics

978-1-4244-6673-3/10/$26.00 ©2010 IEEE

Fig. 2. The New Design Flow.

provide the maximum parallel processing capability in instruction
level and thread level. Moreover, the stream processor platform can
also achieve task-level parallelism by chaining multiple stream cores
to execute a series of procedures in pipeline. A modified configurable
memory array (CMA), which can be configured as cache memory or
buffer, is served as a local store for each stream core.

When the system starts, the head bridge receives stream load
commands and configurations of data accessing pattern. After that,
the head bridge begins to fetch stream elements, such as macroblocks
(MB) for video coding from the external memory and then send
data to CMA of a kernel. As to kernels, they load stream elements
from the previous stage of bridge and then process multiple stream
elements in parallel. The stream elements are processed through a
series of procedures on kernels. Finally, the output stream elements
are generated and stored back to the external memory. In the process,
the series of bridges and kernels operate concurrently and iteratively
until all of the stream element have been processed. The overall
systems runs the target application in pipeline manner. All the media
algorithm can be mapped in a pipeline fashion. The designers need
to determine how many stages are enough.

IV. OVERVIEW OF THE NEW DESIGN FLOW

Fig. 2 shows our new design methodology for VLSI design in hy-
brid design style. After a C-algorithm has been designed and verified,
it will be partitioned into three major parts: KernelC, StreamC, and
BridgeC. StreamC is a serious high-level API to set configuration
information to the head bridge. The configuration information shows
the head bridge how to access data from the external memory and
rearrange data for the kernel at the next stage. BridgeC is an user-
defined fix function that can move data between CMA and the
external memory and restructure data for the next kernel. In our flow,
BridgeC will be translated to dedicated circuits by BridgeC-to-RTL
translator. In this way, the data communication part of an multimedia
algorithm, which is always the performance bottleneck of a multi-
core system, can be customized to be a specific hardware circuits
to achieve high efficiency. KernelC is the computation part of the
multimedia algorithm. We have developed a KernelC-compiler that
compiles KernelC to generate kernel instructions with instruction-
level parallelism(ILP) optimization. Kernel instructions are finally
mapped onto the stream cores. In this way, a stream core can be
programmed with different functions according to various applica-
tions with high flexibility.

In our work, a multi-core streaming simulator has also been devel-
oped to support system-level analysis for designers to make design
choices, like number of cores, different data accessing methods,
and any other important factors that significantly affecting system
performance. The simulator can help exploring design space and
optimizing performance for the input C-algorithm. The simulator
can either run in transaction level modeling(TLM) or cycle-accurate
level(CA). In TLM mode, the kernelC is directly linked with the
simulator for fast simulation. Designers can do functional verification
on C-level, estimate memory bandwidth and examine approximate

Fig. 3. Performance Scalability.

performance. Besides, performance bottleneck can be discovered
and resolved in this stage. In CA mode, the kernelC is compiled
and optimized to kernel instructions. The simulator will run in
hardware scheduling and simulate system performance. In this mode,
cycle-accurate performance and instruction-level verification can be
achieved.

V. SIMULATION RESULTS

We use ConvergenSC to build a system-level platform, including
an ARM968EJS core, external memory systems, OCP bus, and our
multi-core stream processor simulator. We take motion compensation
in SVC [3] decoder as the software for case study. First, the software
code of SVC is implemented as StreamC, KernelC and BridgeC and
then we follow the proposed design methodology shown in Fig. 2 to
generate the corresponding design and run it on our simulator.

We compare performance for the motion compensation module in
the SVC decoder between two implementations with different data
access methods: (1)hardware-managed streaming memory model and
(2)cache-based memory model, called HSM and CM, respectively,
for short. HSM, based on the proposed design flow, implements the
data access unit of the target design with specific circuits. As to
CM, it adopts cache to access data from the external memory. Fig. 3
shows that HSM outperforms than CM in scalability with respect to
number of stream cores. The comparison between the two methods
measures the impact of the data access method for multi-core stream
processors.

VI. CONCLUSION

We propose a novel and scalable design methodology for multi-
core streaming system. To release the high design effort of ASICs
and heavy communication of traditional programmable cores, the
proposed design flow provides a fast and flexible method to cre-
ate multi-core streaming system that can efficiently process media
applications. This design methodology also includes a system-level
analysis method to help designers mapping software and exploring
design space. Experiment results show that the created target in our
methodology can achieve performance scalability.

REFERENCES

[1] U. J. Kapasi, S. Rixner, W. J. Dally, B. Khailany, J. H. Ahn, P. Mattson
and J. D. Owens “Programmabel stream processor,” In IEEE Computer,
Aug. 2003, vol. 36, no. 8, pp. 54V62.

[2] U. J. Kapasi, W. J. Dally, S. Rixner, J. D. Owens, and B. Khailany Kapasi
and et. al., “The Imagine Stream Processor,” In Proceedings 2002 IEEE
International Conference on Computer Design, Sep. 2002, pp. 282–288.

[3] H. Schwarz, D. Marpe, T. Wiegand, “Overview of the Scalable Video
Coding Extension of the H.264/AVC Standard ,” In IEEE Trans. Circuits
Syst. Video, Technol., Vol. 17, No. 9, pp.1103-1120, 2007.

